HomeScienceZika vector competence data reveals risks of outbreaks: the contribution of the...

Zika vector competence data reveals risks of outbreaks: the contribution of the European ZIKAlliance project

[ad_1]

  • Patterson, K. D. & Pyle, G. F. The geography and mortality of the 1918 influenza pandemic. Bull. Hist. Med. 65, 4–21 (1991).

    CAS 
    PubMed 

    Google Scholar
     

  • Poirier, E. Z. & Vignuzzi, M. Virus population dynamics during infection. Curr. Opin. Virol. 23, 82–87 (2017).

    PubMed 
    Article 

    Google Scholar
     

  • Huang, Y.-J. S., Higgs, S. & Vanlandingham, D. L. Emergence and re-emergence of mosquito-borne arboviruses. Curr. Opin. Virol. 34, 104–109 (2019).

    PubMed 
    Article 

    Google Scholar
     

  • Dick, G. W. A., Kitchen, S. F. & Haddow, A. J. Zika Virus (I). Isolations and serological specificity. Trans. R. Soc. Tropical Med. Hyg. 46, 509–520 (1952).

    CAS 
    Article 

    Google Scholar
     

  • Giron, S. et al. Vector-borne transmission of Zika virus in Europe, southern France, August 2019. Eurosurveillance 24, 1900655 (2019).

    PubMed Central 
    Article 

    Google Scholar
     

  • Sim, S., Jupatanakul, N. & Dimopoulos, G. Mosquito immunity against arboviruses. Viruses 6, 4479–4504 (2014).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Aubry, F. et al. Enhanced Zika virus susceptibility of globally invasive Aedes aegypti populations. Science 370, 991–996 (2020).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Lambrechts, L. et al. Genetic specificity and potential for local adaptation between dengue viruses and mosquito vectors. BMC Evolut. Biol. 9, 160 (2009).

    Article 
    CAS 

    Google Scholar
     

  • Mariconti, M. et al. Estimating the risk of arbovirus transmission in Southern Europe using vector competence data. Sci. Rep. 9, 17852 (2019).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Viglietta, M., Bellone, R., Blisnick, A. A. & Failloux, A.-B. Vector specificity of arbovirus transmission. Front. Microbiol. 12, 773211 (2021).

  • Roundy, C. M. et al. Lack of evidence for Zika virus transmission by Culex mosquitoes. Emerg. Microbes Infect. 6, 1–2 (2017).

    Article 

    Google Scholar
     

  • Guo, X. et al. Culex pipiens quinquefasciatus: a potential vector to transmit Zika virus. Emerg. Microbes Infect. 5, 1–5 (2016).

    Article 

    Google Scholar
     

  • Guedes, D. R. et al. Zika virus replication in the mosquito Culex quinquefasciatus in Brazil. Emerg. Microbes Infect. 6, 1–11 (2017).

    Article 

    Google Scholar
     

  • Viveiros-Rosa, S. G., Regis, E. G. & Santos, W. C. Vector competence of Culex mosquitoes (Diptera: Culicidae) in Zika virus transmission: an integrative review. Rev. Panam. Salud Publica 44, e7 (2020).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Hery, L., Boullis, A., Delannay, C. & Vega-Rúa, A. Transmission potential of African, Asian and American Zika virus strains by Aedes aegypti and Culex quinquefasciatus from Guadeloupe (French West Indies). Emerg. Microbes Infect. 8, 699–706 (2019).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Gomard, Y., Lebon, C., Mavingui, P. & Atyame, C. M. Contrasted transmission efficiency of Zika virus strains by mosquito species Aedes aegypti, Aedes albopictus and Culex quinquefasciatus from Reunion Island. Parasites Vectors 13, 398 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Abbo, S. R. et al. Forced Zika virus infection of culex pipiens leads to limited virus accumulation in mosquito saliva. Viruses 12, 659 (2020).

    CAS 
    PubMed Central 
    Article 

    Google Scholar
     

  • Fernandes, R. S. et al. Vector competence of Aedes aegypti, Aedes albopictus and Culex quinquefasciatus from Brazil and New Caledonia for three Zika virus lineages. Pathogens 9, 575 (2020).

    PubMed Central 
    Article 

    Google Scholar
     

  • Lourenço-de-Oliveira, R. et al. Culex quinquefasciatus mosquitoes do not support replication of Zika virus. J. Gen. Virol. 99, 258–264 (2018).

  • Lourenço-de-Oliveira, R. & Failloux, A.-B. Lessons learned on Zika virus vectors. PLoS Negl. Trop. Dis. 11, e0005511 (2017).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Gloria-Soria, A. et al. Global genetic diversity of Aedes aegypti. Mol. Ecol. 25, 5377–5395 (2016).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Guzman, M. G. & Harris, E. Dengue. Lancet 385, 453–465 (2015).

    PubMed 
    Article 

    Google Scholar
     

  • Weaver, S. C. & Lecuit, M. Chikungunya virus and the global spread of a mosquito-borne disease. N. Engl. J. Med. 372, 1231–1239 (2015).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Weaver, S. C., Charlier, C., Vasilakis, N. & Lecuit, M. Zika, Chikungunya, and other emerging vector-borne viral diseases. Annu. Rev. Med 69, 395–408 (2018).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Kramer, L. D. & Ciota, A. T. Dissecting vectorial capacity for mosquito-borne viruses. Curr. Opin. Virol. 15, 112–118 (2015).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Aubry, F. et al. Recent African strains of Zika virus display higher transmissibility and fetal pathogenicity than Asian strains. Nat. Commun. 12, 916 (2021).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Smith, D. R. et al. African and Asian Zika virus isolates display phenotypic differences both in vitro and in vivo. Am. J. Trop. Med. Hyg. 98, 432–444 (2017).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Powell, J. R. Mosquitoes on the move. Science 354, 971–972 (2016).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Weetman, D. et al. Aedes mosquitoes and Aedes-borne arboviruses in Africa: current and future threats. Int. J. Environ. Res. Public Health 15, 220 (2018).

    PubMed Central 
    Article 

    Google Scholar
     

  • Kamgang, B. et al. Different populations of Aedes aegypti and Aedes albopictus (Diptera: Culicidae) from Central Africa are susceptible to Zika virus infection. PLoS Negl. Trop. Dis. 14, e0008163 (2020).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • McClelland, G. A. H. A worldwide survey of variation in scale pattern of the abdominal tergum of Aedes aegypti (L.) (Diptera: Culicidae). Trans. R. Entomol. Soc. Lond. 126, 239–259 (1974).

    Article 

    Google Scholar
     

  • Ho, Z. J. M. et al. Outbreak of Zika virus infection in Singapore: an epidemiological, entomological, virological, and clinical analysis. Lancet Infect. Dis. 17, 813–821 (2017).

    Article 

    Google Scholar
     

  • Ruchusatsawat, K. et al. Long-term circulation of Zika virus in Thailand: an observational study. Lancet Infect. Dis. 19, 439–446 (2019).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Tun, M. M. N. et al. Detection of Zika virus infection in Myanmar. Am. J. Trop. Med. Hyg. 98, 868–871 (2018).

    Article 

    Google Scholar
     

  • Quyen, N. T. H. et al. Chikungunya and Zika virus cases detected against a backdrop of endemic Dengue transmission in Vietnam. Am. J. Trop. Med. Hyg. 97, 146–150 (2017).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Wen, J. & Shresta, S. Antigenic cross-reactivity between Zika and dengue viruses: is it time to develop a universal vaccine? Curr. Opin. Immunol. 59, 1–8 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Luo, X. S., Imai, N. & Dorigatti, I. Quantifying the risk of Zika virus spread in Asia during the 2015-16 epidemic in Latin America and the Caribbean: a modeling study. Travel Med. Infect. Dis. 33, 101562 (2020).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Lefèvre, T., Vantaux, A., Dabiré, K. R., Mouline, K. & Cohuet, A. Non-genetic determinants of mosquito competence for malaria parasites. PLoS Pathog. 9, e1003365 (2013).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Lwande, O. W. et al. Globe-Trotting Aedes aegypti and Aedes albopictus: risk factors for arbovirus pandemics. Vector-Borne Zoonotic Dis. 20, 71–81 (2020).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Grard, G. et al. Zika Virus in Gabon (Central Africa)—2007: a new threat from Aedes albopictus? PLoS Negl. Trop. Dis. 8, e2681 (2014).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Ngoagouni, C., Kamgang, B., Nakouné, E., Paupy, C. & Kazanji, M. Invasion of Aedes albopictus (Diptera: Culicidae) into central Africa: what consequences for emerging diseases? Parasites Vectors 8, 191 (2015).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Kamgang, B. et al. Temporal patterns of abundance of Aedes aegypti and Aedes albopictus (Diptera: Culicidae) and mitochondrial DNA analysis of Ae. albopictus in the Central African Republic. PLoS Negl. Trop. Dis. 7, e2590 (2013).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Vega-Rúa, A. et al. Vector competence of Aedes albopictus populations for chikungunya virus is shaped by their demographic history. Commun. Biol. 3, 1–13 (2020).

    Article 

    Google Scholar
     

  • Nuñez, A. I. et al. Evidence of Zika virus horizontal and vertical transmission in Aedes albopictus from Spain but not infectious virus in saliva of the progeny. Emerg. Microbes Infect. 9, 2236–2244 (2020).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Vazeille, M. et al. Zika virus threshold determines transmission by European Aedes albopictus mosquitoes. Emerg. Microbes Infect. 8, 1668–1678 (2019).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Parra, M. C. P. et al. Detection of Zika RNA virus in Aedes aegypti and Aedes albopictus mosquitoes, São Paulo, Brazil. Infect., Genet. Evolution 98, 105226 (2022).

    Article 

    Google Scholar
     

  • Glavinic, U. et al. Assessing the role of two populations of Aedes japonicus japonicus for Zika virus transmission under a constant and a fluctuating temperature regime. Parasites Vectors 13, 479 (2020).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Koban, M. B. et al. The Asian bush mosquito Aedes japonicus japonicus (Diptera: Culicidae) in Europe, 17 years after its first detection, with a focus on monitoring methods. Parasites Vectors 12, 109 (2019).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Yang, F. et al. Cache valley virus in Aedes japonicus japonicus Mosquitoes, Appalachian Region, United States. Emerg. Infect. Dis. 24, https://doi.org/10.3201/eid2403.161275 (2018).

  • Abbo, S. R. et al. The invasive Asian bush mosquito Aedes japonicus found in the Netherlands can experimentally transmit Zika virus and Usutu virus. PLoS Negl. Trop. Dis. 14, e0008217 (2020).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Stoffel, M. A., Nakagawa, S. & Schielzeth, H. partR2: partitioning R2 in generalized linear mixed models. PeerJ 9, e11414 (2021).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Nakagawa, S., Johnson, P. C. D. & Schielzeth, H. The coefficient of determination R2 and intra-class correlation coefficient from generalized linear mixed-effects models revisited and expanded. J. R. Soc. Interface 14, 20170213 (2017).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2022).

  • Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Lüdecke, D. et al. see: An R Package for Visualizing Statistical Models. https://doi.org/10.31234/osf.io/m4uax (2021).


  • [ad_2]

    Source link

    RELATED ARTICLES

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    Most Popular

    Recent Comments

    %d bloggers like this: