HomeScienceThe genus Serratia revisited by genomics

The genus Serratia revisited by genomics

[ad_1]

  • Merlino, C. P. Bartolomeo Bizio’s letter to the most eminent priest, Angelo Bellani, concerning the phenomenon of the red-colored polenta [translated from the Italian]. J. Bacteriol. 9, 527–543 (1924).

  • Grimont, P. A. D. & Dulong de Rosnay, H. L. C. Numerical study of 60 strains of Serratia. J. Gen. Microbiol. 72, 259–268 (1972).

    CAS 
    PubMed 

    Google Scholar
     

  • Grimont, P. A. D., Grimont, F. & Dulong de Rosnay, H. L. C. Taxonomy of the genus Serratia. J. Gen. Microbiol. 98, 39–66 (1977).

    CAS 
    PubMed 

    Google Scholar
     

  • Grimont, F., Grimont, P. A. D. & Dulong de Rosnay, H. L. C. Characterization of Serratia marcescens, S. liquefaciens, S. plymuthica and S. marinorubra by electrophoresis of their proteinases. J. Gen. Microbiol. 99, 301–310 (1977).

    CAS 

    Google Scholar
     

  • Grimont, P. A. D. et al. Deoxyribonucleic acid relatedness between Serratia plymuthica and other Serratia species, with a description of Serratia odorifera sp. nov. (Type strain: ICPB 3995). Int. J. System. Bacteriol. 28, 453–463 (1978).


    Google Scholar
     

  • Grimont, P. A. D., Grimont, F. & Starr, M. P. Serratia ficaria sp. nov., a bacterial species associated with Smyrna figs and the fig wasp Blastophaga psenes. Curr. Microbiol. 2, 277–282 (1979).


    Google Scholar
     

  • Gavini, F. et al. Serratia fonticola, a new species from water. Int. J. System. Bacteriol. 29, 92–101 (1979).

  • Holmes, B. Proposal to conserve the specific epithet liquefaciens over the specific epithet proteamaculans in the name of the organism currently known as Serratia liquefaciens (Grimes and Hennerty 1931) Bascomb et al. 1971. Request for an opinion. Int. J. Systemic Bacteriol. 30, 220–222 (1980).


    Google Scholar
     

  • Grimont, P. A. D., Grimont, F. & Starr, M. P. Serratia species isolated from plants. Curr. Microbiol. 5, 317–322 (1981).


    Google Scholar
     

  • Grimont, P. A. D., Grimont, F. & Irino, K. Biochemical characterization of Serratia liquefaciens sensu stricto, Serratia proteamaculans, and Serratia grimesii sp. nov. Curr. Microbiol. 7, 69–74 (1982).


    Google Scholar
     

  • Grimont, P. A. D., Irino, K. & Grimont, F. The Serratia liquefaciensS. proteamaculansS. grimesii complex: DNA relatedness. Curr. Microbiol. 7, 63–67 (1982).

    CAS 

    Google Scholar
     

  • Grimont, P. A. D., Jackson, T. A., Ageron, E. & Noonan, M. J. Serratia entomophila sp. nov. associated with amber disease in the New Zealand Grass Grub Costelytra zealandica. Int. J. Syst. Bacteriol. 38, 1–6 (1988).

    CAS 

    Google Scholar
     

  • Murdoch, S. L. et al. The opportunistic pathogen Serratia marcescens utilizes Type VI secretion to target bacterial competitors. J. Bacteriol. 193, 6057–6069 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Williamson, N. R., Fineran, P. C., Ogawa, W., Woodley, L. R. & Salmond, G. P. C. Integrated regulation involving quorum sensing, a two-component system, a GGDEF/EAL domain protein and a post-transcriptional regulator controls swarming and RhlA-dependent surfactant biosynthesis in Serratia. Environ. Microbiol. 10, 1202–1217 (2008).

    CAS 
    PubMed 

    Google Scholar
     

  • Kurz, C. L. et al. Virulence factors of the human opportunistic pathogen Serratia marcescens identified by in vivo screening. EMBO J. 22, 1451–1460 (2003).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Khanna, A., Khanna, M. & Aggarwal, A. Serratia marcescens—a rare opportunistic nosocomial pathogen and measures to limit its spread in hospitalized patients. J. Clin. Diagn. Res. 7, 243–246 (2013).

    PubMed 

    Google Scholar
     

  • Mahlen, S. D. Serratia infections: from military experiments to current practice. Clin. Microbiol. Rev. 24, 755–791 (2011).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Moradigaravand, D., Boinett, C. J., Martin, V., Peacock, S. J. & Parkhill, J. Recent independent emergence of multiple multidrug-resistant Serratia marcescens clones within the United Kingdom and Ireland. Genome Res. 26, 1101–1109 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Karkey, A. et al. Outbreaks of Serratia marcescens and Serratia rubidaea bacteremia in a central Kathmandu hospital following the 2015 earthquakes. Trans. R. Soc. Trop. Med. Hyg. 112, 467–472 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dubouix, A. et al. Epidemiological investigation of a Serratia liquefaciens outbreak in a neurosurgery department. J. Hosp. Infect. 60, 8–13 (2005).

    CAS 
    PubMed 

    Google Scholar
     

  • Grimont, F. & Grimont, P. A. D. The Genus Serratia. in Prokaryotes (eds. Martin Dworkin, Stanley Falkow, Eugene Rosenberg, Karl-Heinz Schleifer & Erko Stackebrandt), Volume 6, 219–244 (Springer-Verlag, 2006).

  • Hurst, M. R. H., Glare, T. R., Jackson, T. A. & Ronson, C. W. Plasmid-located pathogenicity determinants of Serratia entomophila, the causal agent of amber disease of grass grub, show similarity to the insecticidal toxins of Photorhabdus luminescens. J. Bacteriol. 182, 5127–5138 (2000).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hurst, M. R. H., Glare, T. R. & Jackson, T. A. Cloning Serratia entomophila antifeeding genes—a putative defective prophage active against the grass grub Costelytra zealandica. J. Bacteriol. 186, 5116–5128 (2004).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nuñez-Valdez, M. E. et al. Identification of a putative Mexican strain of Serratia entomophila pathogenic against root-damaging larvae of Scarabaeidae (Coleoptera). Appl. Environ. Microbiol. 74, 802–810 (2008).

    ADS 
    PubMed 

    Google Scholar
     

  • Rodríguez-Segura, Z., Chen, J., Villalobos, F. J., Gill, S. & Nuñez-Valdez, M. E. The lipopolysaccharide biosynthesis core of the Mexican pathogenic strain Serratia entomophila is associated with toxicity to larvae of Phyllophaga blanchardi. J. Invertebr. Pathol. 110, 24–32 (2012).

    PubMed 

    Google Scholar
     

  • Hurst, M. R. H. et al. Serratia proteamaculans strain AGR96X encodes an antifeeding prophage (Tailocin) with activity against Grass Grub (Costelytra giveni) and Manuka Beetle (Pyronota Species) larvae. Appl. Environ. Microbiol. 84, e02739-17 (2018).

  • Flyg, C., Kenne, K. & Boman, H. G. Insect pathogenic properties of Serratia marcescens: phage-resistant mutants with a decreased resistance to Cecropia immunity and a decreased virulence to Drosophila. Microbiology 120, 173–181 (1980).

    CAS 

    Google Scholar
     

  • Ishii, K., Adachi, T., Hara, T., Hamamoto, H. & Sekimizu, K. Identification of a Serratia marcescens virulence factor that promotes hemolymph bleeding in the silkworm, Bombyx mori. J. Invertebr. Pathol. 117, 61–67 (2014).

    CAS 
    PubMed 

    Google Scholar
     

  • Raymann, K., Coon, K. L., Shaffer, Z., Salisbury, S. & Moran, N. A. Pathogenicity of Serratia marcescens strains in honey bees. mBio 9, e01649–18 (2018).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ashelford, K. E., Fry, J. C., Bailey, M. J. & Day, M. J. Characterization of Serratia isolates from soil, ecological implications and transfer of Serratia proteamaculans subsp. quinovora Grimont et al. 1983 to Serratia quinivorans corrig., sp. nov. Int. J. Syst. Evolut. Microbiol. 52, 2281–2289 (2002).

    CAS 

    Google Scholar
     

  • Lim, Y.-L. L. et al. Complete genome sequence of Serratia fonticola DSM 4576T, a potential plant growth promoting bacterium. J. Biotechnol. 214, 43–44 (2015).

    CAS 
    PubMed 

    Google Scholar
     

  • Abebe-Akele, F. et al. Genome sequence and comparative analysis of a putative entomopathogenic Serratia isolated from Caenorhabditis briggsae. BMC Genom. 16, 531 (2015).


    Google Scholar
     

  • Petersen, L. M. & Tisa, L. S. Friend or foe? A review of the mechanisms that drive Serratia towards diverse lifestyles. Can. J. Microbiol. 59, 627–640 (2013).

    CAS 
    PubMed 

    Google Scholar
     

  • Cheng, T. H. et al. Genome sequence of Serratia marcescens subsp. sakuensis strain K27, a marine bacterium isolated from sponge (Haliclona amboinensis). Genome Announc. 6, e00022–18 (2018).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Matilla, M. A., Udaondo, Z. & Salmond, G. P. C. Genome sequence of the Oocydin A-producing rhizobacterium Serratia plymuthica 4Rx5. Microbiol. Resour. Announcements 7, e00997–18 (2018).


    Google Scholar
     

  • Chen, S., Blom, J. & Walker, E. D. Genomic, physiologic, and symbiotic characterization of Serratia marcescens strains isolated from the mosquito Anopheles stephensi. Front. Microbiol. 8, 1483 (2017).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ward, D. V. et al. Metagenomic sequencing with strain-level resolution implicates uropathogenic E. coli in necrotizing enterocolitis and mortality in preterm infants. Cell Rep. 14, 2912–2924 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Roach, D. J. et al. A year of infection in the intensive care unit: prospective whole genome sequencing of bacterial clinical isolates reveals cryptic transmissions and novel microbiota. PLOS Genet. 11, e1005413 (2015).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jain, C., Rodriguez-R, L. M., Phillippy, A. M., Konstantinidis, K. T. & Aluru, S. High throughput ANI analysis of 90K prokaryotic genomes reveals clear species boundaries. Nat. Commun. 9, 5114 (2018).

  • Grimont, F. & Grimont, P. A. D. Genus XXXIV, Serratia. In Bergey’s Manual of Systematic Bacteriology, Volume 2 Part B (eds. George Garrity, Don Brenner, Nole Kreig & James Staley) 799–810 (Springer, 2005).

  • Horesh, G. et al. Different evolutionary trends form the twilight zone of the bacterial pan-genome. Microb. Genom. 7, 000670 (2021).

    CAS 
    PubMed Central 

    Google Scholar
     

  • Karp, P. D. et al. Pathway Tools version 23.0 update: software for pathway/genome informatics and systems biology. Brief. Bioinform. 22, 109 (2021).

    PubMed 

    Google Scholar
     

  • Foerstner, K. U., von Mering, C., Hooper, S. D. & Bork, P. Environments shape the nucleotide composition of genomes. EMBO Rep. 6, 1208–1213 (2005).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Palidwor, G. A., Perkins, T. J. & Xia, X. A general model of codon bias due to GC mutational bias. PLOS ONE 5, e13431 (2010).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Reuter, S. et al. Parallel independent evolution of pathogenicity within the genus Yersinia. Proc. Natl Acad. Sci. USA 111, 6768–6773 (2014).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ondov, B. D. et al. Mash: Fast genome and metagenome distance estimation using MinHash. Genome Biol. 17, 132 (2016).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Harris, A. K. P. et al. The Serratia gene cluster encoding biosynthesis of the red antibiotic, prodigiosin, shows species- and strain-dependent genome context variation. Microbiology 150, 3547–3560 (2004).

    CAS 
    PubMed 

    Google Scholar
     

  • Kwak, Y., Khan, A. R. & Shin, J.-H. Genome sequence of Serratia nematodiphila DSM 21420T, a symbiotic bacterium from entomopathogenic nematode. J. Biotechnol. 193, 1–2 (2015).

    CAS 
    PubMed 

    Google Scholar
     

  • Matilla, M. A., Udaondo, Z., Krell, T. & Salmond, G. P. C. Genome sequence of Serratia marcescens MSU97, a plant-associated bacterium that makes multiple antibiotics. Genome Announc. 5, (2017).

  • Cristina, M. L., Sartini, M. & Spagnolo, A. M. Serratia marcescens infections in neonatal intensive care units (NICUs). Int. J. Environ. Res. Public Health 16, (2019).

  • Daoudi, A., Benaoui, F., el Idrissi Slitine, N., Soraa, N. & Rabou Maoulainine, F. M. An outbreak of Serratia marcescens in a Moroccan neonatal intensive care unit. Adv. Med. 2018, 1–4 (2018).


    Google Scholar
     

  • Moles, L. et al. Serratia marcescens colonization in preterm neonates during their neonatal intensive care unit stay. Antimicrob. Resistance Infect. Control 8, 135 (2019).


    Google Scholar
     

  • Martineau, C. et al. Serratia marcescens outbreak in a neonatal intensive care unit: New insights from next-generation sequencing applications. J. Clin. Microbiol. 56, 148–154 (2018).

  • Escribano, E. et al. Influence of a Serratia marcescens outbreak on the gut microbiota establishment process in low-weight preterm neonates. PLOS ONE 14, e0216581 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Montagnani, C. et al. Serratia marcescens outbreak in a neonatal intensive care unit: Crucial role of implementing hand hygiene among external consultants. BMC Infect. Dis. 15, 11 (2015).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hurst, M. R. H., Becher, S. A. & O’Callaghan, M. Nucleotide sequence of the Serratia entomophila plasmid pADAP and the Serratia proteamaculans pU143 plasmid virulence-associated region. Plasmid 65, 32–41 (2011).

    CAS 
    PubMed 

    Google Scholar
     

  • Wood, D. E. & Salzberg, S. L. Kraken: ultrafast metagenomic sequence classification using exact alignments. Genome Biol. 15, 1–12 (2014).


    Google Scholar
     

  • Lu, J., Breitwieser, F. P., Thielen, P. & Salzberg, S. L. Bracken: estimating species abundance in metagenomics data. PeerJ Comput. Sci. 2017, e104 (2017).


    Google Scholar
     

  • Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25, 1754–1760 (2009).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, H. et al. The sequence alignment/map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gurevich, A., Saveliev, V., Vyahhi, N. & Tesler, G. QUAST: quality assessment tool for genome assemblies. Bioinformatics 29, 1072–1075 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zerbino, D. R. & Birney, E. Velvet: algorithms for de novo short read assembly using de Bruijn graphs. Genome Res. 18, 821–829 (2008).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Boetzer, M., Henkel, C. V., Jansen, H. J., Butler, D. & Pirovano, W. Scaffolding pre-assembled contigs using SSPACE. Bioinformatics 27, 578–579 (2011).

    CAS 
    PubMed 

    Google Scholar
     

  • Boetzer, M. & Pirovano, W. Toward almost closed genomes with GapFiller. Genome Biol. 13, 1–9 (2012).


    Google Scholar
     

  • Bankevich, A. et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J. Comput. Biol. 19, 455–477 (2012).

    MathSciNet 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wick, R. R., Judd, L. M., Gorrie, C. L. & Holt, K. E. Unicycler: resolving bacterial genome assemblies from short and long sequencing reads. PLOS Comput. Biol. 13, e1005595 (2017).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Koren, S. et al. Canu: Scalable and accurate long-read assembly via adaptive κ-mer weighting and repeat separation. Genome Res. 27, 722–736 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hunt, M. et al. Circlator: automated circularization of genome assemblies using long sequencing reads. Genome Biol. 16, 294 (2015).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Seemann, T. Prokka: rapid prokaryotic genome annotation. Bioinformatics 30, 2068–2069 (2014).

    CAS 
    PubMed 

    Google Scholar
     

  • Tonkin-Hill, G. et al. Producing polished prokaryotic pangenomes with the Panaroo pipeline. Genome Biol. 21, 1–21 (2020).


    Google Scholar
     

  • Dixon, P. VEGAN, a package of R functions for community ecology. J. Veg. Sci. 14, 927–930 (2003).


    Google Scholar
     

  • Page, A. J. et al. Roary: rapid large-scale prokaryote pan genome analysis. Bioinformatics 31, 3691–3693 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Page, A. J. et al. SNP-sites: rapid efficient extraction of SNPs from multi-FASTA alignments. Microb. Genom. 2, e000056 (2016).

  • Nguyen, L. T., Schmidt, H. A., von Haeseler, A. & Minh, B. Q. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evolution 32, 268 (2015).

    CAS 

    Google Scholar
     

  • Hoang, D. T., Chernomor, O., von Haeseler, A., Minh, B. Q. & Vinh, L. S. UFBoot2: improving the ultrafast bootstrap approximation. Mol. Biol. Evol. 35, 518–522 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • Kalyaanamoorthy, S., Minh, B. Q., Wong, T. K. F., von Haeseler, A. & Jermiin, L. S. ModelFinder: fast model selection for accurate phylogenetic estimates. Nat. Methods 14, 587–589 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jain, C., Rodriguez-R, L. M., Phillippy, A. M., Konstantinidis, K. T. & Aluru, S. High throughput ANI analysis of 90K prokaryotic genomes reveals clear species boundaries. Nat. Commun. 2018 9:1 9, 1–8 (2018).


    Google Scholar
     

  • Shannon, P. et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 13, 2498–2504 (2003).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tonkin-Hill, G., Lees, J. A., Bentley, S. D., Frost, S. D. W. & Corander, J. Fast hierarchical Bayesian analysis of population structure. Nucleic Acids Res. 47, 5539 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Belcour, A. et al. Inferring biochemical reactions and metabolite structures to understand metabolic pathway drift. iScience 23, 100849 (2020).

  • Huerta-Cepas, J. et al. eggNOG 5.0: a hierarchical, functionally and phylogenetically annotated orthology resource based on 5090 organisms and 2502 viruses. Nucleic Acids Res. 47, D309–D314 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • Robertson, J., Bessonov, K., Schonfeld, J. & Nash, J. H. E. Universal whole-sequence-based plasmid typing and its utility to prediction of host range and epidemiological surveillance. Microb. Genom. 6, 1–12 (2020).


    Google Scholar
     

  • Wickham, Hadley. Ggplot2: Elegant Graphics for Data Analysis. (Springer, 2009).

  • Morris, J. H. et al. ClusterMaker: a multi-algorithm clustering plugin for Cytoscape. BMC Bioinform. 12, 1–14 (2011).


    Google Scholar
     

  • Quinlan, A. R. & Hall, I. M. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 26, 841–842 (2010).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Eddy, S. R. Accelerated profile HMM searches. PLOS Comput. Biol. 7, e1002195 (2011).

    ADS 
    MathSciNet 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Camacho, C. et al. BLAST+: architecture and applications. BMC Bioinform. 10, 421 (2009).


    Google Scholar
     

  • Guy, L., Kultima, J. R., Andersson, S. G. E. & Quackenbush, J. GenoPlotR: comparative gene and genome visualization in R. Bioinformatics 27, 2334–2335 (2011).


    Google Scholar
     

  • Arndt, D. et al. PHASTER: a better, faster version of the PHAST phage search tool. Nucleic Acids Res. 44, W16 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yu, G., Smith, D. K., Zhu, H., Guan, Y. & Lam, T. T.-Y. ggtree: an r package for visualization and annotation of phylogenetic trees with their covariates and other associated data. Methods Ecol. Evol. 8, 28–36 (2017).


    Google Scholar
     

  • Conway, J. R., Lex, A. & Gehlenborg, N. UpSetR: an R package for the visualization of intersecting sets and their properties. Bioinformatics 33, 2938–2940 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Williams, D. W. et al. The genus Serratia revisited by genomics. Figshare https://doi.org/10.6084/m9.figshare.18051824 (2022).

    Article 

    Google Scholar
     

  • David Williams. djw533/hamburger: Initial release. (2022) https://doi.org/10.5281/zenodo.6981393

  • David Williams. djw533/micro.gen.extra:. (2022) https://doi.org/10.5281/zenodo.6981456.

  • David Williams. djw533/pathwaytools_gff2gbk:. (2022) https://doi.org/10.5281/zenodo.6981411.

  • Wickham, H. et al. Welcome to the Tidyverse. J. Open Source Softw. 4, 1686 (2019).

    ADS 

    Google Scholar
     


  • [ad_2]

    Source link

    RELATED ARTICLES

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    Most Popular

    Recent Comments

    %d bloggers like this: