HomeScienceProtection of hamsters challenged with SARS-CoV-2 after two doses of MVC-COV1901 vaccine...

Protection of hamsters challenged with SARS-CoV-2 after two doses of MVC-COV1901 vaccine followed by a single intranasal booster with nanoemulsion adjuvanted S-2P vaccine

[ad_1]

  • World Health Organization. WHO Director-General’s opening remarks at the mission briefing on COVID-19—11 March 2020. World Health Organization. March 11, 2020. Accessed 3 Mar 2021. https://www.who.int/director-general/speeches/detail/who-director-general-s-opening-remarks-at-the-media-briefing-on-covid-19—11-march-2020.

  • Zhou, P. et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature 579, 270–273 (2020).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Polack, F. P. et al. Safety and efficacy of the BNT162b2 mRNA Covid-19 vaccine. N. Engl. J. Med. 383, 2603–2615 (2020).

    CAS 
    Article 

    Google Scholar
     

  • Baden, L. R. et al. Efficacy and safety of the mRNA-1273 SARS-CoV-2 vaccine. N. Engl. J. Med. 384, 403–416 (2021).

    CAS 
    Article 

    Google Scholar
     

  • Sadoff, J. et al. Safety and efficacy of single-dose Ad26.COV2.S vaccine against Covid-19. N. Engl. J. Med. 384, 2187–2201 (2021).

    CAS 
    Article 

    Google Scholar
     

  • Knoll, M. D. & Wonodi, C. Oxford–AstraZeneca COVID-19 vaccine efficacy. Lancet 397, 72–74 (2021).

    CAS 
    Article 

    Google Scholar
     

  • Centers for Disease Control and Prevention. Science Brief: COVID-19 Vaccines and Vaccination. https://www.cdc.gov/coronavirus/2019-ncov/science/science-briefs/fully-vaccinated-people.html.

  • Self, W. H. et al. Comparative effectiveness of Moderna, Pfizer-BioNTech, and Janssen (Johnson & Johnson) vaccines in preventing COVID-19 hospitalizations among adults without immunocompromising conditions—United States, March–August 2021. Morb. Mortal. Wkly. Rep. 70(38), 1337 (2021).

    CAS 
    Article 

    Google Scholar
     

  • Hodcroft, E. B. CoVariants: SARS-CoV-2 mutations and variants of interest. https://covariants.org/ (2021).

  • UK Health Security Agency. SARS-CoV-2 variants of concern and variants under investigation in England. Technical briefing: Update on hospitalization and vaccine effectiveness for Omicron VOC-21NOV-01 (B.1.1.529). December 31, 2021. Available at: https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/1044481/Technical-Briefing-31-Dec-2021-Omicron_severity_update.pdf. Retrieved 3 Jan 2022.

  • Levin, E. G. et al. Waning immune humoral response to BNT162b2 Covid-19 vaccine over 6 months. N. Engl. J. Med. 385(24), e84. https://doi.org/10.1056/NEJMoa2114583 (2021) (PMID: 34614326; PMCID: PMC8522797).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Tseng, H. F., Ackerson, B. K., Luo, Y., Sy, L. S., Talarico, C., Tian, Y., Bruxvoort, K., Tupert, J. E., Florea, A., Ku, J. H., Lee, G. S. Effectiveness of mRNA-1273 against SARS-CoV-2 omicron and delta variants. medRxiv (2022).

  • Liu, Y. et al. Aerodynamic analysis of SARS-CoV-2 in two Wuhan hospitals. Nature 582, 557–560 (2020).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Sungnak, W. et al. SARS-CoV-2 entry factors are highly expressed in nasal epithelial cells together with innate immune genes. Nat. Med. 26, 681–687 (2020).

    CAS 
    Article 

    Google Scholar
     

  • Lee, I. T. et al. ACE2 localizes to the respiratory cilia and is not increased by ACE inhibitors or ARBs. Nat. Commun. 11, 5453 (2020).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Hou, Y. J. et al. SARS-CoV-2 reverse genetics reveals a variable infection gradient in the respiratory tract. Cell 182, 429–446 (2020).

    CAS 
    Article 

    Google Scholar
     

  • Gallo, O., Locatello, L. G., Mazzoni, A., Novelli, L. & Annunziato, F. The central role of the nasal microenvironment in the transmission, modulation, and clinical progression of SARS-CoV-2 infection. Mucosal Immunol 14, 305–316 (2021).

    CAS 
    Article 

    Google Scholar
     

  • Subbarao, K. & Mahanty, S. Respiratory virus infections: Understanding COVID-19. Immunity 52, 905–909 (2020).

    CAS 
    Article 

    Google Scholar
     

  • Sakurai, A. et al. Natural history of asymptomatic SARS-CoV-2 infection. N. Engl. J. Med. 383(9), 885–886 (2020).

    Article 

    Google Scholar
     

  • Joo, S. et al. Critical role of TSLP-responsive mucosal dendritic cells in the induction of nasal antigen-specific IgA response. Mucosal Immunol. 10(4), 901–911 (2017).

    CAS 
    Article 

    Google Scholar
     

  • Bernocchi, B., Carpentier, R. & Betbeder, D. Nasal nanovaccines. Int. J. Pharm. 530(1–2), 128–138 (2017).

    CAS 
    Article 

    Google Scholar
     

  • Kiyono, H. & Fukuyama, S. NALT-versus Peyer’s-patch-mediated mucosal immunity. Nat. Rev. Immunol. 4(9), 699–710 (2004).

    CAS 
    Article 

    Google Scholar
     

  • Mato, Y. L. Nasal route for vaccine and drug delivery: Features and current opportunities. Int. J. Pharm. 15(572), 118813 (2019).

    Article 

    Google Scholar
     

  • Pearson, C. F. & Jeffery, R. Oxford-Cardiff C-LC, Thornton EE. Mucosal immune responses in COVID19—a living review. Oxf. Open Immunol. 2, iqab002 (2021).

    Article 

    Google Scholar
     

  • Russell, M. W., Moldoveanu, Z., Ogra, P. L. & Mestecky, J. Mucosal immunity in COVID-19: A neglected but critical aspect of SARS-CoV-2 infection. Front. Immunol. 11, 611337 (2020).

    CAS 
    Article 

    Google Scholar
     

  • Mao, .T, Israelow, B., Suberi, A., Zhou, L., Reschke, M., Peña-Hernández, M. A., Dong, H., Homer, R. J., Saltzman, W. M., Iwasaki, A. Unadjuvanted intranasal spike vaccine booster elicits robust protective mucosal immunity against sarbecoviruses. Biorxiv: The Preprint Server for Biology (2022).

  • van Doremalen, N. et al. Intranasal ChAdOx1 nCoV-19/AZD1222 vaccination reduces viral shedding after SARS-CoV-2 D614G challenge in preclinical models. Sci. Transl. Med. 13(607), eabh0755. https://doi.org/10.1126/scitranslmed.abh0755 (2021) (PMID: 34315826).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Kuo, T. Y. et al. Development of CpG-adjuvanted stable prefusion SARS-CoV-2 spike antigen as a subunit vaccine against COVID-19. Sci. Rep. 10, 20085 (2020).

    CAS 
    Article 

    Google Scholar
     

  • Hsieh, S. M. et al. Safety and immunogenicity of a recombinant stabilized prefusion SARS-CoV-2 spike protein vaccine (MVC-COV1901) adjuvanted with CpG 1018 and aluminum hydroxide in healthy adults: A phase 1, dose-escalation study. EClinicalMedicine https://doi.org/10.1016/j.eclinm.2021.100989 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hsieh, S. M. et al. Safety and immunogenicity of CpG 1018 and aluminium hydroxide- adjuvanted SARS-CoV-2 S-2P protein vaccine MVC-COV1901: Interim results of a large- scale, double-blind, randomised, placebo-controlled phase 2 trial in Taiwan. Lancet Respir. Med. https://doi.org/10.1016/S2213-2600(21)00402-1 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lien, C. E. et al. CpG-adjuvanted stable prefusion SARS-CoV-2 spike protein protected hamsters from SARS-CoV-2 challenge. Sci. Rep. 11, 8761 (2021).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Makidon, P. E. et al. Pre-clinical evaluation of a novel nanoemulsion-based hepatitis B mucosal vaccine. PLoS ONE 3, e2954 (2008).

    ADS 
    Article 

    Google Scholar
     

  • Corman, V. M. et al. Detection of 2019 novel coronavirus (2019-nCoV) by real-time RT-PCR. Euro Surveill. 25, 2000045 (2020).

    PubMed Central 

    Google Scholar
     

  • Liu, L. et al. Anti-spike IgG causes severe acute lung injury by skewing macrophage responses during acute SARS-CoV infection. JCI Insight https://doi.org/10.1172/jci.insight.123158 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jiang, R. D. et al. Pathogenesis of SARS-CoV-2 in transgenic mice expressing human angiotensin-converting enzyme 2. Cell 182, 50–58 (2020).

    CAS 
    Article 

    Google Scholar
     

  • Wang, S. H. et al. Recombinant H5 hemagglutinin adjuvanted with nanoemulsion protects ferrets against pathogenic avian influenza virus challenge. Vaccine 37(12), 1591–1600 (2019).

    CAS 
    Article 

    Google Scholar
     

  • O’Konek, J. J. et al. Intranasal nanoemulsion-based inactivated respiratory syncytial virus vaccines protect against viral challenge in cotton rats. Hum. Vaccines Immunother. 11(12), 2904–2912 (2015).

    Article 

    Google Scholar
     

  • Hamouda, T., Sutcliffe, J. A., Ciotti, S. & Baker, J. R. Jr. Intranasal immunization of ferrets with commercial trivalent influenza vaccines formulated in a nanoemulsion-based adjuvant. Clin. Vaccine Immunol. 18(7), 1167–1175 (2011).

    CAS 
    Article 

    Google Scholar
     

  • Ganesan, S., Acosta, H., Brigolin, C., Orange, K., Trabbic, K., Chen, C., Lien, C. E., Lin, Y. J., Lin, M. Y., Chuang Y. S., Fattom, A. Intranasal nanoemulsion adjuvanted S-2P vaccine demonstrates protection in hamsters and induces systemic, cell-mediated and mucosal immunity in mice. bioRxiv (2022).

  • Wölfel, R. et al. Virological assessment of hospitalized patients with COVID-2019. Nature 581(7809), 465–469 (2020).

    ADS 
    Article 

    Google Scholar
     

  • Halfmann, P. J. et al. SARS-CoV-2 Omicron virus causes attenuated disease in mice and hamsters. Nature 603(7902), 687–692 (2022).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Kuo, T. Y. et al. Protection of hamsters challenged with SARS-CoV-2 variants of concern by two doses of MVC-COV1901 vaccine followed by a single dose of beta variant version of MVC-COV1901. J. Infect. Dis. https://doi.org/10.1093/infdis/jiac153 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Hsieh, S. M., Chang, S. C., Cheng, H. Y., Shih, S. R. & Lien, C. E. Durability and immunogenicity of neutralizing antibodies response against omicron variants after three doses of subunit SARS-CoV-2 vaccine MVC-COV1901: An extension to an open-label, dose-escalation phase 1 study. Infect. Dis. Ther. 17, 1–2 (2022).


    Google Scholar
     


  • [ad_2]

    Source link

    RELATED ARTICLES

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    Most Popular

    Recent Comments

    %d bloggers like this: