[ad_1]
World Health Organization. WHO Director-General’s opening remarks at the mission briefing on COVID-19—11 March 2020. World Health Organization. March 11, 2020. Accessed 3 Mar 2021. https://www.who.int/director-general/speeches/detail/who-director-general-s-opening-remarks-at-the-media-briefing-on-covid-19—11-march-2020.
Zhou, P. et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature 579, 270–273 (2020).
Polack, F. P. et al. Safety and efficacy of the BNT162b2 mRNA Covid-19 vaccine. N. Engl. J. Med. 383, 2603–2615 (2020).
Baden, L. R. et al. Efficacy and safety of the mRNA-1273 SARS-CoV-2 vaccine. N. Engl. J. Med. 384, 403–416 (2021).
Sadoff, J. et al. Safety and efficacy of single-dose Ad26.COV2.S vaccine against Covid-19. N. Engl. J. Med. 384, 2187–2201 (2021).
Knoll, M. D. & Wonodi, C. Oxford–AstraZeneca COVID-19 vaccine efficacy. Lancet 397, 72–74 (2021).
Centers for Disease Control and Prevention. Science Brief: COVID-19 Vaccines and Vaccination. https://www.cdc.gov/coronavirus/2019-ncov/science/science-briefs/fully-vaccinated-people.html.
Self, W. H. et al. Comparative effectiveness of Moderna, Pfizer-BioNTech, and Janssen (Johnson & Johnson) vaccines in preventing COVID-19 hospitalizations among adults without immunocompromising conditions—United States, March–August 2021. Morb. Mortal. Wkly. Rep. 70(38), 1337 (2021).
Hodcroft, E. B. CoVariants: SARS-CoV-2 mutations and variants of interest. https://covariants.org/ (2021).
UK Health Security Agency. SARS-CoV-2 variants of concern and variants under investigation in England. Technical briefing: Update on hospitalization and vaccine effectiveness for Omicron VOC-21NOV-01 (B.1.1.529). December 31, 2021. Available at: https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/1044481/Technical-Briefing-31-Dec-2021-Omicron_severity_update.pdf. Retrieved 3 Jan 2022.
Levin, E. G. et al. Waning immune humoral response to BNT162b2 Covid-19 vaccine over 6 months. N. Engl. J. Med. 385(24), e84. https://doi.org/10.1056/NEJMoa2114583 (2021) (PMID: 34614326; PMCID: PMC8522797).
Tseng, H. F., Ackerson, B. K., Luo, Y., Sy, L. S., Talarico, C., Tian, Y., Bruxvoort, K., Tupert, J. E., Florea, A., Ku, J. H., Lee, G. S. Effectiveness of mRNA-1273 against SARS-CoV-2 omicron and delta variants. medRxiv (2022).
Liu, Y. et al. Aerodynamic analysis of SARS-CoV-2 in two Wuhan hospitals. Nature 582, 557–560 (2020).
Sungnak, W. et al. SARS-CoV-2 entry factors are highly expressed in nasal epithelial cells together with innate immune genes. Nat. Med. 26, 681–687 (2020).
Lee, I. T. et al. ACE2 localizes to the respiratory cilia and is not increased by ACE inhibitors or ARBs. Nat. Commun. 11, 5453 (2020).
Hou, Y. J. et al. SARS-CoV-2 reverse genetics reveals a variable infection gradient in the respiratory tract. Cell 182, 429–446 (2020).
Gallo, O., Locatello, L. G., Mazzoni, A., Novelli, L. & Annunziato, F. The central role of the nasal microenvironment in the transmission, modulation, and clinical progression of SARS-CoV-2 infection. Mucosal Immunol 14, 305–316 (2021).
Subbarao, K. & Mahanty, S. Respiratory virus infections: Understanding COVID-19. Immunity 52, 905–909 (2020).
Sakurai, A. et al. Natural history of asymptomatic SARS-CoV-2 infection. N. Engl. J. Med. 383(9), 885–886 (2020).
Joo, S. et al. Critical role of TSLP-responsive mucosal dendritic cells in the induction of nasal antigen-specific IgA response. Mucosal Immunol. 10(4), 901–911 (2017).
Bernocchi, B., Carpentier, R. & Betbeder, D. Nasal nanovaccines. Int. J. Pharm. 530(1–2), 128–138 (2017).
Kiyono, H. & Fukuyama, S. NALT-versus Peyer’s-patch-mediated mucosal immunity. Nat. Rev. Immunol. 4(9), 699–710 (2004).
Mato, Y. L. Nasal route for vaccine and drug delivery: Features and current opportunities. Int. J. Pharm. 15(572), 118813 (2019).
Pearson, C. F. & Jeffery, R. Oxford-Cardiff C-LC, Thornton EE. Mucosal immune responses in COVID19—a living review. Oxf. Open Immunol. 2, iqab002 (2021).
Russell, M. W., Moldoveanu, Z., Ogra, P. L. & Mestecky, J. Mucosal immunity in COVID-19: A neglected but critical aspect of SARS-CoV-2 infection. Front. Immunol. 11, 611337 (2020).
Mao, .T, Israelow, B., Suberi, A., Zhou, L., Reschke, M., Peña-Hernández, M. A., Dong, H., Homer, R. J., Saltzman, W. M., Iwasaki, A. Unadjuvanted intranasal spike vaccine booster elicits robust protective mucosal immunity against sarbecoviruses. Biorxiv: The Preprint Server for Biology (2022).
van Doremalen, N. et al. Intranasal ChAdOx1 nCoV-19/AZD1222 vaccination reduces viral shedding after SARS-CoV-2 D614G challenge in preclinical models. Sci. Transl. Med. 13(607), eabh0755. https://doi.org/10.1126/scitranslmed.abh0755 (2021) (PMID: 34315826).
Kuo, T. Y. et al. Development of CpG-adjuvanted stable prefusion SARS-CoV-2 spike antigen as a subunit vaccine against COVID-19. Sci. Rep. 10, 20085 (2020).
Hsieh, S. M. et al. Safety and immunogenicity of a recombinant stabilized prefusion SARS-CoV-2 spike protein vaccine (MVC-COV1901) adjuvanted with CpG 1018 and aluminum hydroxide in healthy adults: A phase 1, dose-escalation study. EClinicalMedicine https://doi.org/10.1016/j.eclinm.2021.100989 (2021).
Hsieh, S. M. et al. Safety and immunogenicity of CpG 1018 and aluminium hydroxide- adjuvanted SARS-CoV-2 S-2P protein vaccine MVC-COV1901: Interim results of a large- scale, double-blind, randomised, placebo-controlled phase 2 trial in Taiwan. Lancet Respir. Med. https://doi.org/10.1016/S2213-2600(21)00402-1 (2021).
Lien, C. E. et al. CpG-adjuvanted stable prefusion SARS-CoV-2 spike protein protected hamsters from SARS-CoV-2 challenge. Sci. Rep. 11, 8761 (2021).
Makidon, P. E. et al. Pre-clinical evaluation of a novel nanoemulsion-based hepatitis B mucosal vaccine. PLoS ONE 3, e2954 (2008).
Corman, V. M. et al. Detection of 2019 novel coronavirus (2019-nCoV) by real-time RT-PCR. Euro Surveill. 25, 2000045 (2020).
Liu, L. et al. Anti-spike IgG causes severe acute lung injury by skewing macrophage responses during acute SARS-CoV infection. JCI Insight https://doi.org/10.1172/jci.insight.123158 (2019).
Jiang, R. D. et al. Pathogenesis of SARS-CoV-2 in transgenic mice expressing human angiotensin-converting enzyme 2. Cell 182, 50–58 (2020).
Wang, S. H. et al. Recombinant H5 hemagglutinin adjuvanted with nanoemulsion protects ferrets against pathogenic avian influenza virus challenge. Vaccine 37(12), 1591–1600 (2019).
O’Konek, J. J. et al. Intranasal nanoemulsion-based inactivated respiratory syncytial virus vaccines protect against viral challenge in cotton rats. Hum. Vaccines Immunother. 11(12), 2904–2912 (2015).
Hamouda, T., Sutcliffe, J. A., Ciotti, S. & Baker, J. R. Jr. Intranasal immunization of ferrets with commercial trivalent influenza vaccines formulated in a nanoemulsion-based adjuvant. Clin. Vaccine Immunol. 18(7), 1167–1175 (2011).
Ganesan, S., Acosta, H., Brigolin, C., Orange, K., Trabbic, K., Chen, C., Lien, C. E., Lin, Y. J., Lin, M. Y., Chuang Y. S., Fattom, A. Intranasal nanoemulsion adjuvanted S-2P vaccine demonstrates protection in hamsters and induces systemic, cell-mediated and mucosal immunity in mice. bioRxiv (2022).
Wölfel, R. et al. Virological assessment of hospitalized patients with COVID-2019. Nature 581(7809), 465–469 (2020).
Halfmann, P. J. et al. SARS-CoV-2 Omicron virus causes attenuated disease in mice and hamsters. Nature 603(7902), 687–692 (2022).
Kuo, T. Y. et al. Protection of hamsters challenged with SARS-CoV-2 variants of concern by two doses of MVC-COV1901 vaccine followed by a single dose of beta variant version of MVC-COV1901. J. Infect. Dis. https://doi.org/10.1093/infdis/jiac153 (2022).
Hsieh, S. M., Chang, S. C., Cheng, H. Y., Shih, S. R. & Lien, C. E. Durability and immunogenicity of neutralizing antibodies response against omicron variants after three doses of subunit SARS-CoV-2 vaccine MVC-COV1901: An extension to an open-label, dose-escalation phase 1 study. Infect. Dis. Ther. 17, 1–2 (2022).
[ad_2]
Source link