HomeScienceMetaproteomics reveals enzymatic strategies deployed by anaerobic microbiomes to maintain lignocellulose deconstruction...

Metaproteomics reveals enzymatic strategies deployed by anaerobic microbiomes to maintain lignocellulose deconstruction at high solids

[ad_1]

  • Lynd, L. R. The grand challenge of cellulosic biofuels. Nat. Biotechnol. 35, 912–915 (2017).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Lynd, L. R., Wyman, C. E. & Gerngross, T. U. Biocommodity engineering. Biotechnol. Prog. 15, 777–793 (1999).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Himmel, M. E. et al. Biomass recalcitrance: engineering plants and enzymes for biofuels production. Science 315, 804–807 (2007).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Lynd, L. R., Weimer, P. J., van Zyl, W. H. & Pretorius, I. S. Microbial cellulose utilization: Fundamentals and biotechnology (vol 66, pg 506, 2002). Microbiol Mol. Biol. R. 66, 739–739 (2002).

    Article 

    Google Scholar
     

  • Modenbach, A. A. & Nokes, S. E. Enzymatic hydrolysis of biomass at high-solids loadings: a review. Biomass-. Bioenerg. 56, 526–544 (2013).

    CAS 
    Article 

    Google Scholar
     

  • Chen, X. W. et al. DMR (deacetylation and mechanical refining) processing of corn stover achieves high monomeric sugar concentrations (230 g L−1) during enzymatic hydrolysis and high ethanol concentrations (>10% v/v) during fermentation without hydrolysate purification or concentration. Energ. Environ. Sci. 9, 1237–1245 (2016).

    CAS 
    Article 

    Google Scholar
     

  • Lynd, L. R. et al. Toward low-cost biological and hybrid biological/catalytic conversion of cellulosic biomass to fuels. Energ. Environ. Sci. 15, 938–990 (2022).

    CAS 
    Article 

    Google Scholar
     

  • Jorgensen, H., Vibe-Pedersen, J., Larsen, J. & Felby, C. Liquefaction of lignocellulose at high-solids concentrations. Biotechnol. Bioeng. 96, 862–870 (2007).

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • Hodge, D. B., Karim, M. N., Schell, D. J. & McMillan, J. D. Model-based fed-batch for high-solids enzymatic cellulose hydrolysis. Appl. Biochem. Biotechnol. 152, 88–107 (2009).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Du, J. et al. Enzymatic liquefaction and saccharification of pretreated corn stover at high-solids concentrations in a horizontal rotating bioreactor. Bioprocess Biosyst. Eng. 37, 173–181 (2014).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Liotta, F. et al. Effect of total solids content on methane and volatile fatty acid production in anaerobic digestion of food waste. Waste Manag Res 32, 947–953 (2014).

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • Liotta, F. et al. Modified Anaerobic Digestion Model No.1 for dry and semi-dry anaerobic digestion of solid organic waste. Environ. Technol. 36, 870–880 (2015).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Sawatdeenarunat, C., Surendra, K. C., Takara, D., Oechsner, H. & Khanal, S. K. Anaerobic digestion of lignocellulosic biomass: challenges and opportunities. Bioresour. Technol. 178, 178–186 (2015).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Abbassi-Guendouz, A. et al. Total solids content drives high solid anaerobic digestion via mass transfer limitation. Bioresour. Technol. 111, 55–61 (2012).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Wang, H. et al. Establishing practical strategies to run high loading corn stover anaerobic digestion: methane production performance and microbial responses. Bioresour. Technol. 310, 123364 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Motte, J. C. et al. Total solids content: a key parameter of metabolic pathways in dry anaerobic digestion. Biotechnol. Biofuels 6, Artn 164 10.1186/1754-6834-6-164 (2013).

  • Du, J. et al. Identifying and overcoming the effect of mass transfer limitation on decreased yield in enzymatic hydrolysis of lignocellulose at high solid concentrations. Bioresour. Technol. 229, 88–95 (2017).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Kristensen, J. B., Felby, C. & Jorgensen, H. Yield-determining factors in high-solids enzymatic hydrolysis of lignocellulose. Biotechnol. Biofuels 2, 11 (2009).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Li, C., Mortelmaier, C., Winter, J. & Gallert, C. Effect of moisture of municipal biowaste on start-up and efficiency of mesophilic and thermophilic dry anaerobic digestion. Bioresour. Technol. 168, 23–32 (2014).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Verbeke, T. J., Garcia, G. M. & Elkins, J. G. The effect of switchgrass loadings on feedstock solubilization and biofuel production by Clostridium thermocellum. Biotechnol. Biofuels 10, 1–9 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Shao, X. J., Murphy, S. J. & Lynd, L. R. Characterization of reduced carbohydrate solubilization during Clostridium thermocellum fermentation with high switchgrass concentrations. Biomass Bioenerg. 139, ARTN 105623, https://doi.org/10.1016/j.biombioe.2020.105623 (2020).

  • Holwerda, E. K. et al. Metabolic and evolutionary responses of Clostridium thermocellum to genetic interventions aimed at improving ethanol production. Biotechnol. Biofuels 13, 40 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Holwerda, E. K. et al. The exometabolome of Clostridium thermocellum reveals overflow metabolism at high cellulose loading. Biotechnol. Biofuels 7, 155 (2014).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Bayer, E. A., Lamed, R. & Himmel, M. E. The potential of cellulases and cellulosomes for cellulosic waste management. Curr. Opin. Biotechnol. 18, 237–245 (2007).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Cantarel, B. L. et al. The Carbohydrate-Active EnZymes database (CAZy): an expert resource for Glycogenomics. Nucleic Acids Res 37, D233–D238 (2009).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Lombard, V., Golaconda Ramulu, H., Drula, E., Coutinho, P. M. & Henrissat, B. The carbohydrate-active enzymes database (CAZy) in 2013. Nucleic Acids Res 42, D490–D495 (2014).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Nelson, M. C., Morrison, M. & Yu, Z. A meta-analysis of the microbial diversity observed in anaerobic digesters. Bioresour. Technol. 102, 3730–3739 (2011).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Sundberg, C. et al. 454 pyrosequencing analyses of bacterial and archaeal richness in 21 full-scale biogas digesters. FEMS Microbiol Ecol. 85, 612–626 (2013).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Ma, S. et al. A microbial gene catalog of anaerobic digestion from full-scale biogas plants. Gigascience 10, https://doi.org/10.1093/gigascience/giaa164 (2021).

  • Allgaier, M. et al. Targeted discovery of glycoside hydrolases from a switchgrass-adapted compost community. PLoS ONE 5, e8812 (2010).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • D’Haeseleer, P. et al. Proteogenomic analysis of a thermophilic bacterial consortium adapted to deconstruct switchgrass. PLoS ONE 8, e68465 (2013).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Lillington, S. P., Leggieri, P. A., Heom, K. A. & O’Malley, M. A. Nature’s recyclers: anaerobic microbial communities drive crude biomass deconstruction. Curr. Opin. Biotech. 62, 38–47 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Lim, J. W., Park, T., Tong, Y. W. & Yu, Z. The microbiome driving anaerobic digestion and microbial analysis. Adv. Bioenergy 5, 1–61 (2020).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Kougias, P. G. et al. Spatial distribution and diverse metabolic functions of lignocellulose-degrading uncultured bacteria as revealed by genome-centric metagenomics. Appl. Environ. Microb. 84, https://doi.org/10.1128/aem.01244-18 (2018).

  • Campanaro, S. et al. Metagenomic analysis and functional characterization of the biogas microbiome using high throughput shotgun sequencing and a novel binning strategy. Biotechnol. Biofuels 9, 26 (2016).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • van der Lelie, D. et al. The metagenome of an anaerobic microbial community decomposing poplar wood chips. PLoS ONE 7, e36740 (2012).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Comtet-Marre, S. et al. Metatranscriptomics reveals the active bacterial and eukaryotic fibrolytic communities in the rumen of dairy cow fed a mixed diet. Front Microbiol. 8, 67 (2017).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Svartström, O. et al. Ninety-nine de novo assembled genomes from the moose (Alces alces) rumen microbiome provide new insights into microbial plant biomass degradation. ISME J. 11, 2538–2551 (2017).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Campanaro, S. et al. New insights from the biogas microbiome by comprehensive genome-resolved metagenomics of nearly 1600 species originating from multiple anaerobic digesters. Biotechnol. Biofuels 13, 25 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Jiang, C. et al. Characterizing the growing microorganisms at species level in 46 anaerobic digesters at Danish wastewater treatment plants: a six-year survey on microbial community structure and key drivers. Water Res. 193, 116871 (2021).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Tomazetto, G., Pimentel, A. C., Wibberg, D., Dixon, N. & Squina, F. M. Multi-omic Directed Discovery of Cellulosomes, Polysaccharide Utilization Loci, and Lignocellulases from an Enriched Rumen Anaerobic Consortium. Appl Environ Microbiol 86, https://doi.org/10.1128/AEM.00199-20 (2020).

  • Liu, N. et al. Functional metagenomics reveals abundant polysaccharide-degrading gene clusters and cellobiose utilization pathways within gut microbiota of a wood-feeding higher termite. ISME J. 13, 104–117 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Schalk, F. et al. The termite fungal cultivar termitomyces combines diverse enzymes and oxidative reactions for plant biomass conversion. mBio 12, e0355120 (2021).

    PubMed 
    Article 

    Google Scholar
     

  • Liang, X. et al. Development and characterization of stable anaerobic thermophilic methanogenic microbiomes fermenting switchgrass at decreasing residence times. Biotechnol. Biofuels 11, 1–18 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Abbassi-Guendouz, A. et al. Microbial community signature of high-solid content methanogenic ecosystems. Bioresour. Technol. 133, 256–262 (2013).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Zhu, N. et al. Metagenomic and metaproteomic analyses of a corn stover-adapted microbial consortium EMSD5 reveal its taxonomic and enzymatic basis for degrading lignocellulose. Biotechnol. Biofuels 9, 1–23 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Gharechahi, J. & Salekdeh, G. H. A metagenomic analysis of the camel rumen’s microbiome identifies the major microbes responsible for lignocellulose degradation and fermentation. Biotechnol. Biofuels 11, 216 (2018).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Dumitrache, A. et al. Specialized activities and expression differences for Clostridium thermocellum biofilm and planktonic cells. Sci. Rep-Uk 7, ARTN 43583 10.1038/srep43583 (2017).

  • Zhang, H. et al. dbCAN2: a meta server for automated carbohydrate-active enzyme annotation. Nucleic Acids Res. 46, https://doi.org/10.1093/nar/gky418 (2019).

  • Reddy, A. P. et al. Discovery of microorganisms and enzymes involved in high-solids decomposition of rice straw using metagenomic analyses. PLoS One 8, e77985 (2013).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Ostby, H., Hansen, L. D., Horn, S. J., Eijsink, V. G. H. & Varnai, A. Enzymatic processing of lignocellulosic biomass: principles, recent advances and perspectives. J. Ind. Microbiol. Biot., https://doi.org/10.1007/s10295-020-02301-8 (2020).

  • Blumer-Schuette, S. E. et al. Thermophilic lignocellulose deconstruction. Fems Microbiol Rev. 38, 393–448 (2014).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Brumm, P. J., Gowda, K., Robb, F. T. & Mead, D. A. The complete genome sequence of Hyperthermophile Dictyoglomus turgidum DSM 6724 (TM) reveals a specialized carbohydrate fermentor. Front. Microbiol. 7, ARTN 1979, https://doi.org/10.3339/fmicb.2016.01979 (2016).

  • Nishida, H., Beppu, T. & Ueda, K. Whole-genome comparison clarifies close phylogenetic relationships between the phyla Dictyoglomi and Thermotogae. Genomics 98, 370–375 (2011).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Zou, Z. Z. et al. A new thermostable beta-glucosidase mined from Dictyoglomus thermophilum: properties and performance in octyl glucoside synthesis at high temperatures. Bioresour. Technol. 118, 425–430 (2012).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Dodd, D., Mackie, R. I. & Cann, I. K. Xylan degradation, a metabolic property shared by rumen and human colonic Bacteroidetes. Mol. Microbiol 79, 292–304 (2011).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Hu, Z. J., Sykes, R., Davis, M. F., Brummer, E. C. & Ragauskas, A. J. Chemical profiles of switchgrass. Bioresour. Technol. 101, 3253–3257 (2010).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Speirs, L. B. M., Rice, D. T. F., Petrovski, S. & Seviour, R. J. The phylogeny, biodiversity, and ecology of the chloroflexi in activated sludge. Front Microbiol 10, 2015 (2019).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Biswal, A. K. et al. Sugar release and growth of biofuel crops are improved by downregulation of pectin biosynthesis. Nat. Biotechnol. 36, 249–257 (2018).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Li, F., Foucat, L. & Bonnin, E. Effect of solid loading on the behaviour of pectin-degrading enzymes. Biotechnology for Biofuels 14, ARTN 107 https://doi.org/10.1186/s13068-021-01957-3 (2021).

  • Levasseur, A., Drula, E., Lombard, V., Coutinho, P. M. & Henrissat, B. Expansion of the enzymatic repertoire of the CAZy database to integrate auxiliary redox enzymes. Biotechnology for Biofuels 6, Artn 41 https://doi.org/10.1186/1754-6834-6-41 (2013).

  • Qiu, Z. Y., Fang, C., He, N. L. & Bao, J. An oxidoreductase gene ZMO1116 enhances the p-benzoquinone biodegradation and chiral lactic acid fermentability of Pediococcus acidilactici. J. Biotechnol. 323, 231–237 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Yan, Z., Gao, X. C., Gao, Q. Q. & Bao, J. Mechanism of tolerance to the lignin-derived inhibitor p-benzoquinone and metabolic modification of biorefinery fermentation strains. Appl Environ Microb 85, ARTN e01443-19 https://doi.org/10.1128/AEM.01443-19 (2019).

  • Jensen, K. A., Houtman, C. J., Ryan, Z. C. & Hammel, K. E. Pathways for extracellular fenton chemistry in the brown rot basidiomycete Gloeophyllum trabeum. Appl Environ. Micro. 67, 2705–2711 (2001).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Bugg, T. D. H., Ahmad, M., Hardiman, E. M. & Rahmanpour, R. Pathways for degradation of lignin in bacteria and fungi. Nat. Prod. Rep. 28, 1883–1896 (2011).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Arantes, V., Jellison, J. & Goodell, B. Peculiarities of brown-rot fungi and biochemical Fenton reaction with regard to their potential as a model for bioprocessing biomass. Appl Microbiol Biot. 94, 323–338 (2012).

    CAS 
    Article 

    Google Scholar
     

  • Cairo, J. P. L. F. et al. Expanding the knowledge on lignocellulolytic and redox enzymes of worker and soldier castes from the lower termite coptotermes gestroi. Front. Microbiol. 7, ARTN 1518 https://doi.org/10.3389/fmicb.2016.01518 (2016).

  • Slesak, I., Slesak, H. & Kruk, J. Oxygen and hydrogen peroxide in the early evolution of life on earth: in silico comparative analysis of biochemical pathways. Astrobiology 12, 775–784 (2012).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Kersten, P. & Cullen, D. Extracellular oxidative systems of the lignin-degrading Basidiomycete Phanerochaete chrysosporium. Fungal Genet Biol. 44, 77–87 (2007).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • McGivern, B. B. et al. Decrypting bacterial polyphenol metabolism in an anoxic wetland soil. Nat. Commun. 12, 2466 (2021).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Hagen, L. H. et al. Quantitative Metaproteomics Highlight the Metabolic Contributions of Uncultured Phylotypes in a Thermophilic Anaerobic Digester. Appl. Environ. Microbiol. 83, https://doi.org/10.1128/AEM.01955-16 (2017).

  • Dyksma, S., Jansen, L. & Gallert, C. Syntrophic acetate oxidation replaces acetoclastic methanogenesis during thermophilic digestion of biowaste. Microbiome 8, 105 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Timmers, P. H. A. et al. Metabolism and occurrence of methanogenic and sulfate-reducing syntrophic acetate oxidizing communities in haloalkaline environments. Front Microbiol. 9, 3039 (2018).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Lopes, A. M., Ferreira, E. X. & Moreira, L. R. S. An update on enzymatic cocktails for lignocellulose breakdown. J. Appl. Microbiol. 125, 632–645 (2018).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Pakarinen, A., Zhang, J., Brock, T., Maijala, P. & Viikari, L. Enzymatic accessibility of fiber hemp is enhanced by enzymatic or chemical removal of pectin. Bioresour. Technol. 107, 275–281 (2012).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Zheng, Y. X. et al. Semi-continuous production of high-activity pectinases by immobilized Rhizopus oryzae using tobacco wastewater as substrate and their utilization in the hydrolysis of pectin-containing lignocellulosic biomass at high solid content. Bioresour. Technol. 241, 1138–1144 (2017).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Wang, J. H. et al. Efficient saccharification of agave biomass using Aspergillus niger produced low-cost enzyme cocktail with hyperactive pectinase activity. Bioresour. Technol. 272, 26–33 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Gruno, M., Valjamae, P., Pettersson, G. & Johansson, G. Inhibition of the Trichoderma reesei cellulases by cellobiose is strongly dependent on the nature of the substrate. Biotechnol. Bioeng. 86, 503–511 (2004).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Halliwell, G. & Griffin, M. Nature and mode of action of cellulolytic component C1 of Trichoderma-Koningii on native cellulose. Biochem J. 135, 587–594 (1973).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Chen, M. et al. Strategies to reduce end-product inhibition in family 48 glycoside hydrolases. Proteins 84, 295–304 (2016).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Kumar, R. & Wyman, C. E. Strong cellulase inhibition by Mannan polysaccharides in cellulose conversion to sugars. Biotechnol. Bioeng. 111, 1341–1353 (2014).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Qing, Q., Yang, B. & Wyman, C. E. Xylooligomers are strong inhibitors of cellulose hydrolysis by enzymes. Bioresour. Technol. 101, 9624–9630 (2010).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Chung, D. et al. Deletion of a gene cluster encoding pectin degrading enzymes in Caldicellulosiruptor bescii reveals an important role for pectin in plant biomass recalcitrance. Biotechnology for Biofuels 7, ARTN 147 https://doi.org/10.1186/s13068-014-0147-1 (2014).

  • Xiao, C. W. & Anderson, C. T. Roles of pectin in biomass yield and processing for biofuels. Front Plant Sci 4, ARTN 67 https://doi.org/10.3389/fpls.2013.00067 (2013).

  • Qin, L. et al. Inhibition of lignin-derived phenolic compounds to cellulase. Biotechnology for Biofuels 9, ARTN 70 https://doi.org/10.1186/s13068-016-0485-2 (2016).

  • Li, X. et al. Inhibitory effects of lignin on enzymatic hydrolysis: the role of lignin chemistry and molecular weight. Renew. Energ. 123, 664–674 (2018).

    CAS 
    Article 

    Google Scholar
     

  • Rahikainen, J. L. et al. Inhibitory effect of lignin during cellulose bioconversion: The effect of lignin chemistry on non-productive enzyme adsorption. Bioresour. Technol. 133, 270–278 (2013).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Kubis, M. R., Holwerda, E. K. & Lynd, L. R. Declining carbohydrate solubilization with increasing solids loading during fermentation of cellulosic feedstocks by Clostridium thermocellum: documentation and diagnostic tests. Biotechnol Biof Biop 15, ARTN 12 https://doi.org/10.1186/s13068-022-02110-4 (2022).

  • Lovley, D. R., Greening, R. C. & Ferry, J. G. Rapidly growing rumen methanogenic organism that synthesizes coenzyme M and has a high affinity for formate. Appl Environ. Microbiol 48, 81–87 (1984).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Saeman, J. F., Bubl, J. L. & Harris, E. E. Quantitative Saccharification of Wood and Cellulose. Ind. Eng. Chem. Anal. Ed. 17, 35–37 (1945).

    CAS 
    Article 

    Google Scholar
     

  • Sluiter, A. & National Renewable Energy Laboratory (U.S.). Determination of structural carbohydrates and lignin in biomass: laboratory analytical procedure (LAP): issue date, 4/25/2008, https://purl.fdlp.gov/GPO/LPS94089.

  • Walker, C., Ryu, S., Giannone, R. J., Garcia, S. & Trinh, C. T. Understanding and Eliminating the Detrimental Effect of Thiamine Deficiency on the Oleaginous Yeast Yarrowia lipolytica. Appl. Environ. Microbiol. 86, https://doi.org/10.1128/AEM.02299-19 (2020).

  • Kanehisa, M., Sato, Y. & Morishima, K. BlastKOALA and GhostKOALA: KEGG Tools for Functional Characterization of Genome and Metagenome Sequences. J. Mol. Biol. 428, 726–731 (2016).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Huerta-Cepas, J. et al. eggNOG 5.0: a hierarchical, functionally and phylogenetically annotated orthology resource based on 5090 organisms and 2502 viruses. Nucleic Acids Res. 47, D309–D314 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Batth, T. S. et al. Protein aggregation capture on microparticles enables multipurpose proteomics sample preparation. Mol. Cell Proteom. 18, 1027–1035 (2019).

    CAS 
    Article 

    Google Scholar
     


  • [ad_2]

    Source link

    RELATED ARTICLES

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    Most Popular

    Recent Comments

    %d bloggers like this: