HomeScienceAntigenic comparison of the neuraminidases from recent influenza A vaccine viruses and...

Antigenic comparison of the neuraminidases from recent influenza A vaccine viruses and 2019–2020 circulating strains

[ad_1]

  • Francis, T., Salk, J. E., Pearson, H. E. & Brown, P. N. Protective Effect of Vaccination against Induced Influenza A. J. Clin. Investig. 24, 536–546 (1945).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Salk, J. E., Pearson, H. E., Brown, P. N. & Francis, T. Protective Effect of Vaccination against Induced Influenza B. J. Clin. Investig. 24, 547–553 (1945).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Hobson, D., Curry, R. L., Beare, A. S. & Ward-Gardner, A. The role of serum haemagglutination-inhibiting antibody in protection against challenge infection with influenza A2 and B viruses. J. Hyg. (Lond.) 70, 767–777 (1972).

    CAS 

    Google Scholar
     

  • Schulman, J. L., Khakpour, M. & Kilbourne, E. D. Protective effects of specific immunity to viral neuraminidase on influenza virus infection of mice. J. Virol. 2, 778–786 (1968).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Allan, W. H., Madeley, C. R. & Kendal, A. P. Studies with avian influenza A viruses: cross protection experiments in chickens. J. Gen. Virol. 12, 79–84 (1971).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Murphy, B. R., Kasel, J. A. & Chanock, R. M. Association of serum anti-neuraminidase antibody with resistance to influenza in man. N. Engl. J. Med. 286, 1329–1332 (1972).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • CDC. Seasonal Influenza Vaccine Supply for the U.S. 2020–2021 Influenza Season. https://www.cdc.gov/flu/prevent/vaxsupply.htm (2021).

  • Grohskopf, L. A. et al. Prevention and Control of Seasonal Influenza with Vaccines: Recommendations of the Advisory Committee on Immunization Practices-United States, 2018–19 Influenza Season. MMWR Recomm. Rep. 67, 1–20 (2018).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Buhler, S. & Ramharter, M. Flucelvax Tetra: a surface antigen, inactivated, influenza vaccine prepared in cell cultures. ESMO Open 4, e000481 (2019).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Lamb, Y. N. Cell-Based Quadrivalent Inactivated Influenza Virus Vaccine (Flucelvax((R)) Tetra/Flucelvax Quadrivalent((R))): A Review in the Prevention of Influenza. Drugs 79, 1337–1348 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Barr, I. G. & Jelley, L. L. The coming era of quadrivalent human influenza vaccines: who will benefit? Drugs 72, 2177–2185 (2012).

    PubMed 
    Article 

    Google Scholar
     

  • Russell, C. A. et al. Influenza vaccine strain selection and recent studies on the global migration of seasonal influenza viruses. Vaccine 26, D31–D34 (2008).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Paules, C. I., Sullivan, S. G., Subbarao, K. & Fauci, A. S. Chasing Seasonal Influenza – The Need for a Universal Influenza Vaccine. N. Engl. J. Med. 378, 7–9 (2018).

    PubMed 
    Article 

    Google Scholar
     

  • Flannery, B. et al. Spread of Antigenically Drifted Influenza A(H3N2) Viruses and Vaccine Effectiveness in the United States During the 2018-2019 Season. J. Infect. Dis. 221, 8–15 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Johansson, B. E., Matthews, J. T. & Kilbourne, E. D. Supplementation of conventional influenza A vaccine with purified viral neuraminidase results in a balanced and broadened immune response. Vaccine 16, 1009–1015 (1998).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Chen, Z. et al. Cross-protection against a lethal influenza virus infection by DNA vaccine to neuraminidase. Vaccine 18, 3214–3222 (2000).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Easterbrook, J. D. et al. Protection against a lethal H5N1 influenza challenge by intranasal immunization with virus-like particles containing 2009 pandemic H1N1 neuraminidase in mice. Virology 432, 39–44, [pii] 10.1016/j.virol.2012.06.003.

  • Rockman, S. et al. Neuraminidase-inhibiting antibody is a correlate of cross-protection against lethal H5N1 influenza virus in ferrets immunized with seasonal influenza vaccine. J. Virol. 87, 3053–3061 (2013).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Wohlbold, T. J. et al. Vaccination with adjuvanted recombinant neuraminidase induces broad heterologous, but not heterosubtypic, cross-protection against influenza virus infection in mice. MBio 6, e02556 (2015).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Westgeest, K. B. et al. Genetic evolution of the neuraminidase of influenza A (H3N2) viruses from 1968 to 2009 and its correspondence to haemagglutinin evolution. J. Gen. Virol. 93, 1996–2007 (2012).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Memoli, M. J. et al. Evaluation of Antihemagglutinin and Antineuraminidase Antibodies as Correlates of Protection in an Influenza A/H1N1 Virus Healthy Human Challenge Model. mBio 7, e00417–00416 (2016).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Chen, Y. Q. et al. Influenza Infection in Humans Induces Broadly Cross-Reactive and Protective Neuraminidase-Reactive Antibodies. Cell 173, 417–429.e410 (2018).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Gao, J. et al. Antigenic Drift of the Influenza A(H1N1)pdm09 Virus Neuraminidase Results in Reduced Effectiveness of A/California/7/2009 (H1N1pdm09)-Specific Antibodies. MBio 10, https://doi.org/10.1128/mBio.00307-19 (2019).

  • Mendez-Legaza, J. M., Ortiz de Lejarazu, R. & Sanz, I. Heterotypic Neuraminidase Antibodies Against Different A(H1N1) Strains are Elicited after Seasonal Influenza Vaccination. Vaccines (Basel) 7, https://doi.org/10.3390/vaccines7010030 (2019).

  • Gao, J. et al. Balancing the influenza neuraminidase and hemagglutinin responses by exchanging the vaccine virus backbone. PLoS Pathog. 17, e1009171 (2021).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Luther, P., Adamczyk, B. & Bergmann, K. C. Simple test for detection of virus neuraminidase and antineuraminidase using lectins (lectin-neuraminidase test system). Zentralbl Bakteriol. A 248, 281–285 (1980).

    CAS 
    PubMed 

    Google Scholar
     

  • Luther, P., Klett, G. E., Weber, S., Pechmann, H. & Bergmann, K. C. The lectin neuraminidase inhibition test: a new method for the detection of antibodies to neuraminidase. J. Biol. Stand. 11, 115–121 (1983).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Lambre, C. R., Terzidis, H., Greffard, A. & Webster, R. G. Measurement of anti-influenza neuraminidase antibody using a peroxidase-linked lectin and microtitre plates coated with natural substrates. J. Immunol. Methods 135, 49–57 (1990).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Cate, T. R. et al. A high dosage influenza vaccine induced significantly more neuraminidase antibody than standard vaccine among elderly subjects. Vaccine 28, 2076–2079 (2010).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Fritz, R. et al. A vero cell-derived whole-virus H5N1 vaccine effectively induces neuraminidase-inhibiting antibodies. J. Infect. Dis. 205, 28–34 (2012).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Couzens, L. et al. An optimized enzyme-linked lectin assay to measure influenza A virus neuraminidase inhibition antibody titers in human sera. J. Virol. Methods 210, 7–14 (2014).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Westgeest, K. B. et al. Optimization of an enzyme-linked lectin assay suitable for rapid antigenic characterization of the neuraminidase of human influenza A(H3N2) viruses. J. Virol. Methods 217, 55–63 (2015).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Wan, H. et al. Structural characterization of a protective epitope spanning A(H1N1)pdm09 influenza virus neuraminidase monomers. Nat. Commun. 6, 6114 (2015).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Zhu, X. et al. Structural Basis of Protection against H7N9 Influenza Virus by Human Anti-N9 Neuraminidase Antibodies. Cell Host Microbe 26, 729–738 e724 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Couch, R. B. et al. Antibody correlates and predictors of immunity to naturally occurring influenza in humans and the importance of antibody to the neuraminidase. J. Infect. Dis. 207, 974–981 (2013).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Trombetta, C. M., Marchi, S., Manini, I., Lazzeri, G. & Montomoli, E. Challenges in the development of egg-independent vaccines for influenza. Expert Rev. Vaccines 18, 737–750 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Lotan, R., Skutelsky, E., Danon, D. & Sharon, N. The purification, composition, and specificity of the anti-T lectin from peanut (Arachis hypogaea). J. Biol. Chem. 250, 8518–8523 (1975).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Schulman, J. L. & Kilbourne, E. D. Independent variation in nature of hemagglutinin and neuraminidase antigens of influenza virus: distinctiveness of hemagglutinin antigen of Hong Kong-68 virus. Proc. Natl Acad. Sci. USA 63, 326–333 (1969).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Kosik, I. & Yewdell, J. W. Influenza A virus hemagglutinin specific antibodies interfere with virion neuraminidase activity via two distinct mechanisms. Virology 500, 178–183 (2017).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Wang, H., Dou, D., Östbye, H., Revol, R. & Daniels, R. Structural restrictions for influenza neuraminidase activity promote adaptation and diversification. Nat. Microbiol. https://doi.org/10.1038/s41564-019-0537-z (2019).

  • Jiang, L. et al. Comparative Efficacy of Monoclonal Antibodies That Bind to Different Epitopes of the 2009 Pandemic H1N1 Influenza Virus Neuraminidase. J. Virol. 90, 117–128 (2016).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Yasuhara, A. et al. Antigenic drift originating from changes to the lateral surface of the neuraminidase head of influenza A virus. Nat. Microbiol. 4, 1024–1034 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Kirkpatrick Roubidoux, E. et al. Novel Epitopes of the Influenza Virus N1 Neuraminidase Targeted by Human Monoclonal Antibodies. J. Virol, e0033222, https://doi.org/10.1128/jvi.00332-22 (2022).

  • Wan, H. et al. The neuraminidase of A(H3N2) influenza viruses circulating since 2016 is antigenically distinct from the A/Hong Kong/4801/2014 vaccine strain. Nat. Microbiol. 4, 2216–2225 (2019).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Powell, H. & Pekosz, A. Neuraminidase antigenic drift of H3N2 clade 3c.2a viruses alters virus replication, enzymatic activity and inhibitory antibody binding. PLoS Pathog. 16, e1008411 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Wei, C. J. et al. Cross-neutralization of 1918 and 2009 influenza viruses: role of glycans in viral evolution and vaccine design. Sci. Transl. Med. 2, 24ra21 (2010).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wei, X. et al. Antibody neutralization and escape by HIV-1. Nature 422, 307–312 (2003).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Ostbye, H. et al. N-Linked Glycan Sites on the Influenza A Virus Neuraminidase Head Domain Are Required for Efficient Viral Incorporation and Replication. J. Virol. 94, https://doi.org/10.1128/JVI.00874-20 (2020).

  • da Silva, D. V. et al. The influenza virus neuraminidase protein transmembrane and head domains have coevolved. J. Virol. 89, 1094–1104 (2015).

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • Sandbulte, M. R., Gao, J., Straight, T. M. & Eichelberger, M. C. A miniaturized assay for influenza neuraminidase-inhibiting antibodies utilizing reverse genetics-derived antigens. Influenza Other Respir. Viruses 3, 233–240 (2009).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Hoffmann, E., Neumann, G., Kawaoka, Y., Hobom, G. & Webster, R. G. A DNA transfection system for generation of influenza A virus from eight plasmids. Proc. Natl Acad. Sci. USA 97, 6108–6113 (2000).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • da Silva, D. V., Nordholm, J., Madjo, U., Pfeiffer, A. & Daniels, R. Assembly of subtype 1 influenza neuraminidase is driven by both the transmembrane and head domains. J. Biol. Chem. 288, 644–653 (2013).

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • Nordholm, J., da Silva, D. V., Damjanovic, J., Dou, D. & Daniels, R. Polar residues and their positional context dictate the transmembrane domain interactions of influenza a neuraminidases. J. Biol. Chem. 288, 10652–10660 (2013).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Li, Q. et al. The 2009 pandemic H1N1 neuraminidase N1 lacks the 150-cavity in its active site. Nat. Struct. Mol. Biol. 17, 1266–1268 (2010).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Zhu, X. et al. Influenza virus neuraminidases with reduced enzymatic activity that avidly bind sialic Acid receptors. J. Virol. 86, 13371–13383 (2012).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     


  • [ad_2]

    Source link

    RELATED ARTICLES

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    Most Popular

    Recent Comments

    %d bloggers like this: